EFECTOS DE LA CARGA FÍSICA ANAERÓBICA SOBRE EL PROCESO DE SÍNTESIS DE PROTEÍNAS CONTRÁCTILES EN EL MÚSCULO ESQUELÉTICO

EFECTOS DE LA CARGA FÍSICA ANAERÓBICA SOBRE EL PROCESO DE SÍNTESIS DE PROTEÍNAS CONTRÁCTILES EN EL MÚSCULO ESQUELÉTICO

Contenido principal del artículo

Isabel Adriana Sánchez
Resumen

El objetivo del presente artículo fue realizar una revisión bibliográfica, a partir de la cual se logró establecer la relación existente entre la carga anaeróbica y la síntesis de proteínas contráctiles, tomando como referencia de consulta diferentes bases de datos especializadas, así como en bibliografía de orden secundario y terciario, estableciendo
como criterios de inclusión aquella bibliografía no mayor a 5 años, que dieran razón de los procesos de síntesis de proteínas contráctiles y de la correlación de estos procesos con la caga anaeróbica. Sin embargo, tras la búsqueda exhaustiva se encontró que el tiempo de vigencia de la literatura con relación a este tema, era de 20 años atrás hasta la fecha, donde varios estudios experimentales del comportamiento muscular frente a la imposición de carga física anaeróbica, se empezó a manejar con ratas en ensayos de laboratorio controlados. Las variables tenidas en cuenta para la elaboración de esta revisión fueron: Estructura y función de las proteínas contráctiles del músculo esquelético, Síntesis de Proteínas Contráctiles del músculo esquelético, Carga anaeróbica y finalmente la correlación existente entre la carga anaeróbica y la síntesis de proteínas contráctiles. Dentro de los resultados se encontró que la actividad de orden anaeróbico tiene mayor inferencia en los fenómenos de producción de actina y miosina, sin embargo, es importante resaltar que la síntesis de proteínas contráctiles va a depender de la indemnidad del sistema nervioso central en correlación con la unidad neuromuscular. Finalmente se concluye, que la aplicación de ejercicios de orden anaeróbico con carga externa incrementan los procesos enzimáticos que dan pie a la síntesis de proteínas contráctiles, ya que su producción no va a depender de altos niveles de oxígeno circulante.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a / Ver

Isabel Adriana Sánchez, Universidad Manuela Beltrán

Magister en Educación, Instituto Tecnológico de Monterrey – México; Especialista en Fisioterapia en Cuidado Crítico, Corporación Universitaria Iberoamericana; Fisioterapeuta, Universidad Manuela Beltrán. Docente Programa de Fisioterapia Universidad Manuela Beltrán.

Referencias

Solomon, A. (2006). Modifying muscle mass the endocrine

perspective. Rev. Journal of Endocrinology, 2 (191), 349–360. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17088404.

Ackerman, M. (1994). Ion channels and clinical disease. Rev. New England Journal of Medicine, (336), 1 -22. Recuperado el 16 de agosto del 2012. Disponible en: http://www.uwyo.edu/ neuron/ionchanneldisease.pdf

Albert, L. (1994) Biología molecular de la célula. 3ª ed. España: Omega.

Alvis, K., & Estrada, Y. (2003). Relación teórica entre actividad física y sinetesis de distrofina. Trabajo para optar al Titulo de Grado de Fisioterapeuta, 1 -120. Universidad Nacional de Colombia.

Aronson, D. (1998). Exercise stimulates c – Jun NH2 kinase activity and c – Jun transcriptional activity in human skeletal muscle. Biochemistry biophysics Res Commun. Rev. Science Direct. 1(251), 106 – 110. Recuperado el 16 de agosto del 2012. Disponible en: http://www.sciencedirect.com/science/ article/pii/S0006291X98994359.

Astrand. (1997). Fisiología del esfuerzo y del deporte. España: Harcourt Brace.

Baar, K. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Rev. FASEB Journal. 16(14),1879. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/

Biolo, G. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Rev. American Physiological Society, 3 (268), 514- 520. Recuperado el 19 de agosto del 2012. Disponible en http:// ajpendo.physiology.org/content/268/3/E514.short

Biolo, G. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Rev. American Journal of Physiology-Endocrinology And Metabolism. 1 (273), E122-129. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9252488

Berg, M (2008). Bioquímica. Barcelona, España: Reverte.

Bohé, J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. Rev. Journal Physiology. (552), 315. Recuperado el 25 de septiembre de 2012. Disponible en: http://jp.physoc.org/content/552/1/315.abstract

Brower, R. (2009). Consequences of bed rest. Rev. Critical Care Medicine. (37), S422–S428. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm. nih.gov/pubmed/20046130

Castro, A. (2001). Efectos del Óxido Nítrico en la fisiología muscular. Rev. Efdeportes. Recuperado el 16 de agosto de 2011. Disponible en: http://www.efdeportes.com/efd39/ on.htm

Carraro, F. (1990). Effect of exercise and recovery on muscle protein synthesis in human subjects. Rev. American Journal Physiology. (259), E470 - E476. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/2221048

Connor, MK. (2000). Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Rev. Journal Applied Physiology. ( 88), 1601–1606. Recuperado el 25 de septiembre de 2012. Disponible en: http://jap. physiology.org/content/88/5/1601

Costill, D. (1979). Adaptations In skeletal muscle following strength training. J Appl Physiol, 1(46), 96-99. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih. gov/pubmed/37209

Dietze, G. (1982). New aspects of the blood flow augmenting and insulin-like activity of muscle exercise: possible involvement of the kallikreinkinin-prostaglandin system. Klin Wochenschr, (9), 429 – 444. Recuperado el 25 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/6806524

Donato, D. (2012). Aerobic Exercise Intensity Affects Skeletal Muscle Myofibrillar Protein Synthesis and Anabolic Signaling in Young Men. Tesis para optar el título de Magister en Ciencias y Kinesiología. Universidad de Hamilton Ontario.

Farrell, P.A. (1999). Hypertrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise. Rev. Journal of Applied Physiology, ( 87), 1083 – 1086. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/10484579

Flaim, K.E. (1980). Effects of diabetes on protein synthesis in fast and slow twich rat skeletal muscle. Rev. American Journal of Physiology endocrinology. (239), 88 – 95. Recuperado el 26 de septiembre de 2012. http://www.ncbi.nlm.nih.gov/pubmed/ 6156604

Giorgos, K. (2003). Changes in muscle morphology in diálisis patients after 6 months of aerobic execise training. Nephrol. Dial. Transplant, 9 (18), 1845-1861. Recuperado el 21 de marzo de 2011. Disponible en: http://www.kidney.org/ professionals/kdoqi/guidelines_cvd/pdf/cvd_%20in_dialysis_

composite%20gl.pdf

Gibson, JN. (1989). Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. Rev. European Journal Clinical Investigation. (2), 206- 212. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/2499480

Glover, EI. (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. Rev. Journal Physiology, (586), 6049–6061. Recuperado el 25 de septiembre de 2012. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/18955382

Guyton, A. (2011). Tratado de Fisiología Médica. España: Elsevier Health Sciences.

Hakkinen, K. (1981). Effect of combined concentric and eccentric strength training and detraining on forcetime, muscle fiber and metabolic characteristics of leg extensor muscles. Rev. Seand Journal of Sports Sciences. (3), 50 – 58. Recuperado el 12 de agosto de 2012. Disponible en: http://www.cafyd.com/REVISTA/01001.pdf

Hood, D. (2001). Biogénesis mitocondrial en músculo esquelético inducida por actividad contráctil. Rev. Journal of Applied Physiology. (90), 1137 – 1157. Recuperado el 12 de marzo de 2011. Disponible en: http://www.efdeportes.com/ efd112/biogenesismitocondrial-en-musculo-esqueletico.htm

Hoffman, E. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Rev. Cell. (51), 919-928. Recuperado el 26 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3319190

Hough, CL. (2006). Neuromuscular sequelae in survivors of acute lung injury. Rev. Clin Chest Med. (27), 691–703. Recuperado el 24 de septiembre de 2012 Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17085256

Kendrick, J. (1967). Protein synthesis and enzyme response to contractile activity in skeletal muscle. Rev. Nature. (5074), 406 – 408. Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/6029535

Koolman, J. (2005). Bioquímica. Madrid, España: Médica Panamericana.

Li, J, Wang, X, Fraser, S. (2002). Effects of fatigue and training on sarcoplasmic reticulum Ca2+ regulation in human skeletal muscle. Rev. Journal of Applied Physiology. (92), 912 – 922. Recuperado el 26 de septiembre de 2012.

Koolman, J. (2005). Bioquímica. Disponible en: http://www. ncbi.nlm.nih.gov/pubmed/11842021

Luque, M. (2012). Estructura y Propiedades de las Proteínas. Recuperado el 24 de septiembre de 2012. Disponible en: http: //www.uv.es/tunon/pdf_doc/proteinas_09.pdf

Insua, M. Síntesis protéica y Glutamina. Rev. Medicina. (69), 18 – 21. Recuperado el 21 de marzo de 2011. Disponible en: http://www.saic.org.ar/revista/2009_2/saic09.pdf

MacDougall J.D. (1979). Mitochondrial volume density in human skeletal muscle following heavy resistance training. Rev. Afed Sci Sports. (11), 164-166. Recuperado el 12 de agosto de 2012. Disponible en: http://ukpmc.ac.uk/abstract/MED/ 158694/reload=0;jsessionid=eBqp6BEiQMv3gBS3Vt5d.12

Petersen, AM. (2005). The anti-inflammatory effect of exercise. Rev. Journal Applied of Physiology. (98), 1154–1162. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15772055

Platonov, V. (2002). Teoría General del Entrenamiento Deportivo Olímpico. Barcelona: Paidotribo.

Rassier, DE. (2009). Molecular basis of force development by skeletal muscles during and after stretch. Rev. Molecular and cellular biomechanics. (4), 229 – 241. Recuperado el 23 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/19899446

Sale, D. (1982). Neuromuscular adaptation in human thenar muscles following strength training and immobilization. Rev. Journal of Applied Physiology. (53), 419 – 424. Recuperado el 12 de marzo de 2011. Disponible en: http://jap.physiology.org/

content/53/2/419.short

Sergeyevich, V. (1998). Fisiología del Deportista. Barcelona: Paidotribo.

Siff, M. (2000). Superentrenamiento. Barcelona: Paidotribo.

Stevens, RD. (2007). Neuromuscular dysfunction acquired in critical illness: A systematic review. Rev. Intensive Care Med. (33); 1876–1891. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17639340

Suzuki, A. (1994). Molecular organization at the glycoprotein – complex – binding site for dystrophin - three dystrophin asssociated proteins bind directly to the carboxyl – terminal portion of dystrophin. Eur J Biochem. 2(220), 283-92. Recuperado el 20 de marzo de 2011. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/8125086

Tanner, BC. (2012). Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. Rev. PLoS Computational Biology. (5). Recuperado el 27 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22589710

Tarnopolsky, M. (1999). Protein metabolism in strength and endurance activities. Rev. Journal of Physiology. (586), 3701 – 3717. Recuperado el 19 de agosto del 2012. Disponible en: http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2008.153916/full

Teijón, J y Cols. (2006). Fundamentos de Bioquímica Estructural. Marid, España: Tebar.

Tesch, A. (2008). Adaptaciones Enzimáticas generadas por el entrenamiento de fuerza a largo plazo. Suecia. Rev. Grupo Sobreentrenamiento.com. Recuperado el 16 de agosto de 2012. Disponible en: http://www.docstoc.com/docs/3255366/

Adaptaciones-Enzimaticas-Generadas-por-el-Entrenamiento-de-Fuerza

Thomas, R. (2007). Principios del entrenamiento de Fuerza y del acondicionamiento físico. Marid, España: Médica Panamericana.

Williams, J. (1998) Functional aspects of skeletal muscle

contractile apparatus and sarcoplasmic reticulum after fatigue. Rev. Journal of Applied Physiology. (85), 619 – 626. Recuperado el 12 de marzo de 2011. Disponible en: http://jap. physiology.org/content/85/2/619.short

Wilmore, J. y Costill, D. (2004). Fisiología del Esfuerzo y el deporte. Barcelona: Paidotribo.

Winkelman, C. (2009). Bed Rest in Health and Critical Illness A Body Systems Approach. Rev. AACN Advanced Critical Care. (20); 254–266. Recuperado el 24 de septiembre de 2012. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19638747