A neural network approach to the alignment of transtibial prostheses

Un enfoque de redes neuronales para la alineación de prótesis transtibiales

Main Article Content

Lely A. Luengas-C.
Luis Felipe Wanumen
Esperanza Camargo Casallas
Abstract

Introduction: The presence of diseases or musculoskeletal alterations, as well as trauma due to accidents have as a possible consequence amputation, in Colombia the armed conflict is added as a cause, since it has generated a population group with disabilities due to landmines, amputation being predominant in lower limb. The prosthesis is used so that the amputee can adapt to their condition and rejoin their daily activities, its use occurs after the alignment of the prosthesis. The alignment tends to be a subjective process, where knowledge and practice are essential at the time of carrying it out; there are no systems that allow knowing the affectation of the alignment on biomechanical variables of the amputee. For this reason, it was proposed to create a neural network that shows the incidence of the angular variation of the socket of the prosthesis in joint ranges, the distribution of body weight and the center of pressure.


Method: A descriptive study was carried out where the socket of the prosthesis of a transtibial amputee was placed in seven different angular positions, in each position biomechanical parameters were measured, with these data a generalized regression neural network (GRNN) was programmed to predict data biomechanics from the socket location and a graphical interface was generated to view the parameter changes.


Results: The neural network allowed predicting the behavior of the hip, knee and ankle angles, the location of the pressure center and the body weight supported both ipsilaterally (amputee) and contralaterally (non amputee); and in the graphical interface the affectation could be shown.


Conclusion: The use of technological tools allows the construction of support systems for medical personnel, in this case the prosthetist, to improve the rehabilitation process of a person with a transtibial prosthesis.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
37%
33%
Days to publication 
144
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
Bogotá: Corporación Universitaria Iberoamericana

Article Details

Author Biographies / See

Luis Felipe Wanumen, Universidad Distrital Francisco José de Caldas

Máster en Ingeniería de Sistemas y Computación de la Pontificia Universidad Javeriana, Ingeniero de Sistemas de la Universidad Distrital Francisco José de Caldas. Docente e Investigador de la Universidad Distrital Francisco José de Caldas.

Esperanza Camargo Casallas, Universidad Distrital Francisco José de Caldas

Ingeniera en Control e Instrumentación. Doctora en Ingeniería. Profesora de la Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

References

Biometrics Ltd. (2020). Twin-Axis Goniometers for Dynamic Joint Movement Analysis. Biometrics Ltd. https://www.biometricsltd.com/goniometer.htm

Blumentritt, S., Schmalz, T., & Jarasch, R. (2001). Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation. Der Orthopade, 30(3), 161–168. DOI: https://doi.org/10.1007/s001320050590

Boone, D. A., Kobayashi, T., Chou, T. G., Arabian, A. K., Coleman, K. L., Orendurff, M. S., & Zhang, M. (2012). Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait & Posture, 37(4), 620–626. DOI: https://doi.org/10.1016/j.gaitpost.2012.10.002

https://doi.org/10.1016/j.gaitpost.2012.10.002 DOI: https://doi.org/10.1016/j.gaitpost.2012.10.002

Clemente, Y. M., & Roque, D. M. (2013). Segmentación de imágenes cerebrales de Resonancia Magnética basada en Redes Neuronales de Regresión Generalizada. Revista Cubana de Informática Médica, 5(1), 82–90.

Dávila-Cervantes, A. (2014). Simulación en Educación Médica. Inv Ed Med, 3(10), 100–105. https://doi.org/10.1016/S2007-5057(14)72733-4 DOI: https://doi.org/10.1016/S2007-5057(14)72733-4

Dirección Contra Minas. (2020). Víctimas de minas antipersonal y municiones sin explosionar. Presidencia de La República de Colombia. http://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticas-de-Victimas.aspx

Findlow, A., Goulermas, J. Y., Nester, C., Howard, D., & Kenney, L. P. J. (2008). Predicting lower limb joint kinematics using wearable motion sensors. Gait & Posture, 28(1), 120–126. https://doi.org/10.1016/j.gaitpost.2007.11.001 DOI: https://doi.org/10.1016/j.gaitpost.2007.11.001

Heinrichs, B., & Eickhoff, S. B. (2020). Your evidence? Machine learning algorithms for medical diagnosis and prediction. Human Brain Mapping, 41(6), 1435–1444. https://doi.org/10.1002/hbm.24886 DOI: https://doi.org/10.1002/hbm.24886

Isakov, E., Mizrahi, J., Ring, H., Susak, Z., & Hakim, N. (1992). Standing sway and weight-bearing distribution in people with below-knee amputations. Archives of Physical Medicine and Rehabilitation, 73(2), 174–178. http://www.ncbi.nlm.nih.gov/pubmed/1543414

Isakov, E., Mizrahi, J., Susak, Z., Ona, I., & Hakim, N. (1994). Influence of prosthesis alignment on the standing balance of below-knee amputees. Clinical Biomechanics, 9(4), 258–262. https://doi.org/10.1016/0268-0033(94)90008-6 DOI: https://doi.org/10.1016/0268-0033(94)90008-6

Kobayashi, T., Orendurff, M. S., & Boone, D. A. (2014). Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthetics and Orthotics International, Online, 1–5. https://doi.org/10.1177/0309364614545421 DOI: https://doi.org/10.1177/0309364614545421

López, J. G., & Spirko, L. V. (2007). Simulación, herramienta para la educación médica. Salud Uninorte, 23(1), 79–95.

Luengas C., L. A., Gutierrez, M. A., & Camargo, E. (2017). Alineación de prótesis y parámetros biomecánicos de pacientes amputados transtibiales. UD Editorial.

Luengas C., L. A., & Toloza, D. C. (2019). Análisis de estabilidad en amputados transtibiales unilaterales. UD Editorial.

Novel.de. (2019). The pedar® system. Novel GmbH. http://www.novel.de/novelcontent/pedar

Paráková, B., Míková, M., & Janura, M. (2007). The influence of prostheses and prosthetic foot alignment on postural behavior in transtibial amputees. Acta Universitatis Palackianae Olomucensis. Gymnica, 37(4), 37–44.

Samitier, C. B., Guirao, L., Pleguezuelos, E., Pérez Mesquida, M. E., Reverón, G., & Costea, M. (2011). Evaluation of mobility in patients with a lower limb amputation. Rehabilitacion, 45(1), 61–66. https://doi.org/10.1016/j.rh.2010.09.006 DOI: https://doi.org/10.1016/j.rh.2010.09.006

Tafti, N., Hemmati, F., Safari, R., Karimi, M. T., Farmani, F., Khalaf, A., & Mardani, M. A. (2018). A systematic review of variables used to assess clinically acceptable alignment of unilateral transtibial amputees in the literature. Journal of Engineering in Medicine Manuscript, 232(8), 826–840. https://doi.org/10.1177/0954411918789450 DOI: https://doi.org/10.1177/0954411918789450

Xiaohong, J., Xiaobing, L., Peng, D., & Ming, Z. (2005). The Influence of Dynamic Trans-tibial Prosthetic Alignment on Standing Plantar Foot Pressure. Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 7, 6916–6918. https://doi.org/10.1109/IEMBS.2005.1616096 DOI: https://doi.org/10.1109/IEMBS.2005.1616096

Citations

Crossref
Scopus
Europe PMC