KINESIOGENÓMICA: UNA NUEVA PERSPECTIVA DE INVESTIGACIÓN EN FISIOTERAPIA

KINESIOGENÓMICA: UNA NUEVA PERSPECTIVA DE INVESTIGACIÓN EN FISIOTERAPIA

Contenido principal del artículo

José Iván Alfonso Mantilla
Jaime Martínez Santa
Olga Cecilia Vargas
Resumen

Introducción: el campo deportivo es un ámbito de investigación de diversas áreas de las ciencias de la salud, la kinesiogenómica realiza el estudio de secuencias genéticas comprometidas en el rendimiento deportivo, con la aparición del mapeo genético se ha abierto una brecha a la investigación de la genética como agente de interacción del potencial humano.

Objetivo: realizar una revisión sistemática de la literatura sobre el campo de la genética aplicada en el área deportiva y clínica.

Materiales y métodos: se realizó una revisión sistemática en las siguientes bases de datos: “Ebsco” “Pedro” “Hinari” “Elsevier” “Science Direct” “Springer” “Medline”, con los siguientes términos MESH: Athletic Performance, Genetic Variation, Physical Fitness, Sport.

Resultados: Existen genes específicos que influencian el desarrollo de un deportista de alto rendimiento relacionados con la resistencia al esfuerzo físico, desarrollo de fuerza, masa y potencia muscular, susceptibilidad de lesiones y asociados a respuestas psicológicas especificas.

Conclusiones: En la actualidad el descubrimiento del mapeo genético permite identificar genes específicos implicados en el desarrollo físico de deportistas de alto rendimiento, estos son genes relacionados con resistencia ADRB2, 79C/G, BDKBR2, CHRM2, EpoR, HBB,HIF-1 α, GYS1,NOS3, NRF2,PPAR5, VEGF; fuerza, masa y potencia muscular son: ACE, ACTN3, AMPD1,CK-MM,IGF1; susceptibilidad de lesiones son: COL1A1,COL5A1, MMP3, TNC; y los relacionados con las respuestas psicológicas son: 5HTT, BDNF, con ayuda de estos genes se puede estudiar la posibilidad de realizar terapias genéticas con el fin de crear individuos genéticamente dotados.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a / Ver

José Iván Alfonso Mantilla, Universidad del Rosario

Estudiante de Fisioterapia Universidad del Rosario, Bogotá –Colombia.

Jaime Martínez Santa, Universidad del Rosario

Especialista en Epidemiología. Especialista en Estadística. Fisioterapeuta. Docente Universidad del Rosario, Bogotá –Colombia.

Olga Cecilia Vargas, Universidad del Rosario

Magíster Sport and Exercise Rehabilitation. Especialista en Cuidado Respiratorio. Fisioterapeuta. Docente Universidad del Rosario, Bogotá –Colombia.

Referencias

Ahmetov, II., Druzhevskaya, A. M., Astratenkova, I. V., Popov, D. V., Vinogradova, O. L., & Rogozkin, V. A. (2010). The ACTN3 R577X polymorphism in Russian endurance athletes. Br J Sports Med, 44(9), 649-652. doi:10.1136/bjsm.2008.051540

Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I. J., et al. (2011). ACTN3 genotype, athletic status, and life course physical

capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat, 32(9), 1008-1018. doi:10.1002/humu.21526

Bray, M. S., Hagberg, J. M., Perusse, L., Rankinen, T., Roth, S. M., Wolfarth, B., & Bouchard, C. (2009). The human gene map for performance and health-related fitness phenotypes: the 2006- 2007 update. Med Sci Sports Exerc, 41(1), 35-73.

Brutsaert, T. D., & Parra, E. J. (2006). What makes a champion? Explaining variation in human athletic performance. Respir Physiol Neurobiol, 151(2- 3), 109-123. doi:10.1016/j.resp.2005.12.013

Brutsaert, T. D., & Parra, E. J. (2009). Nature versus nurture in determining athletic ability. Med Sport Sci, 54, 11-27. doi:10.1159/0002 35694

Callier, S. (2012). Genetic privacy in sports: clearing the hurdles. Recent Pat DNA Gene Seq, 6(3), 224-228.

Collins, M., Xenophontos, S. L., Cariolou, M. A., Mokone, G. G., Hudson, D. E., Anastasiades, L., & Noakes, T. D. (2004). The ACE gene and endurance performance during the South African Ironman Triathlons. Med Sci Sports Exerc, 36(8),1314-1320.

Cupeiro, R., Benito, P. J., Maffulli, N., Calderon, F. J., & Gonzalez-Lamuno, D. (2010). MCT1 genetic polymorphism influence in high intensity circuit training: a pilot study. J Sci Med Sport,13(5), 526-530. doi:10.1016/j.jsams.2009.07.004

Ehlert, T., Simon, P., & Moser, D. A. (2013). Epigenetics in sports. Sports Med, 43(2), 93-110. doi:10.1007/s40279-012-0012-y

Eynon, N., Banting, L.K., Ruiz, J.R., Cieszczyk, P., Dyatlov, D. A., Maciejewska-Karlowska, A., et al. (2014). ACTN3 R577X polymorphism and team-sport performance: a study involving three European cohorts. J Sci Med Sport, 17(1), 102-106. doi:10.1016/j.jsams.2013.02.005

Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med, 43(9), 803-817. doi:10. 1007/s40279-013-0059-4

Eynon, N., Ruiz, J. R., Oliveira, J., Duarte, J. A., Birk, R., & Lucia, A. (2011). Genes and elite athletes: a roadmap for future research. J Physiol, 589(Pt 13), 3063-3070. doi:10.1113/jphysiol.2011.207035

Garatachea, N., & Lucia, A. (2013). Genes, physical fitness and ageing. Ageing Res Rev, 12(1), 90- 102. doi:10.1016/j.arr.2012.09.003

Gineviciene, V., Pranculis, A., Jakaitiene, A., Milasius, K., & Kucinskas, V. (2011). Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina (Kaunas), 47(5), 284-290.

Goodman, C.A., Mayhew, D.L., & Hornberger, T.A. (2011). Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal, 23(12), 1896-1906. doi:10.1016/j. cellsig.2011.07.013

Grimaldi, K.A., Paoli, A., & Smith, G.J. (2012). Personal genetics: ¿sports utility vehicle? Recent Pat DNA Gene Seq, 6(3), 209-215.

Guth, L. M., & Roth, S. M. (2013). Genetic influence on athletic performance. Curr Opin Pediatr, 25(6), 653-658. doi:10.1097/MOP.0b0 13e3283659087

Hanson, E. D., Ludlow, A. T., Sheaff, A. K., Park, J., & Roth, S. M. (2010). ACTN3 genotype does not influence muscle power. Int J Sports Med, 31(11), 834-838. doi:10.1055/s-0030-1263116

Huuskonen, A., Lappalainen, J., Oksala, N., Santtila, M., Hakkinen, K., Kyrolainen, H., & Atalay, M. (2011). Common genetic variation in the

IGF1 associates with maximal force output. Med Sci Sports Exerc, 43(12), 2368-2374. doi:10.1249/MSS.0b013e3182220179

Huygens, W., Thomis, M. A., Peeters, M. W., Vlietinck, R. F., & Beunen, G. P. (2004). Determinants and upper-limit heritabilities of skeletal

muscle mass and strength. Can J Appl Physiol, 29(2), 186-200.

Jones, A., Montgomery, H. E., & Woods, D. R. (2002). Human performance: ¿a role for the ACE genotype? Exerc Sport Sci Rev, 30(4), 184-190.

Kambouris, M., Ntalouka, F., Ziogas, G., & Maffulli, N. (2012). Predictive genomics DNA profiling for athletic performance. Recent Pat DNA Gene

Seq, 6(3), 229-239.

Kanherkar, R. R., Bhatia-Dey, N., & Csoka, A. B. (2014). Epigenetics across the human lifespan. Front Cell Dev Biol, 2, 49. doi:10.3389/fcell. 2014.00049

Kim, H., Song, K. H., & Kim, C. H. (2014). The ACTN3 R577X variant in sprint and strength performance. J Exerc Nutrition Biochem, 18(4),

-353. doi:10.5717/jenb.2014.18.4.347

Lek, M., Quinlan, K.G., & North, K.N. (2010). The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric alpha-actinins. Bioessays, 32(1), 17-25. doi:10.1002/bies. 200900110

Lippi, G., Longo, U. G., & Maffulli, N. (2010). Genetics and sports. Br Med Bull, 93, 27-47. doi:10.1093/bmb/ldp007

Lucia, A., Moran, M., Zihong, H., & Ruiz, J. R. (2010). Elite athletes: ¿are the genes the champions? Int J Sports Physiol Perform, 5(1), 98-102.

Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., & Gao, L. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One, 8(1), e54685. doi:10.1371/journal.pone.0054685

Maffulli, N., Margiotti, K., Longo, U.G., Loppini, M., Fazio, V. M., & Denaro, V. (2013). The genetics of sports injuries and athletic performance. Muscles Ligaments Tendons J, 3(3), 173-189.

Mattson, M. P. (2012). Evolutionary aspects of human exercise—born to run purposefully. Ageing Res Rev, 11(3), 347-352. doi:10.1016/j.arr. 2012.01.007

Pereira, A., Costa, A.M., Leitao, J.C., Monteiro, A.M., Izquierdo, M., Silva, A.J., et al. (2013). The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high-speed power training. BMC Geriatr, 13, 131. doi:10.1186/1471-

-13-131

Pescatello, L.S., Devaney, J.M., Hubal, M.J., Thompson, P.D., & Hoffman, E.P. (2013). Highlights from the functional single nucleotide polymorphisms associated with human muscle size and strength or FAMuSS study. Biomed Res Int, 2013, 643575. doi:10.1155/2013/ 643575

Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Fuku, N., Mikami, E., et al. (2013). Genomics of elite sporting performance: what little we know and necessary advances. Br J Sports Med, 47(9), 550-555. doi:10.1136/ bjsports-2013-092400

Pokrywka, A., Kaliszewski, P., Majorczyk, E., & Zembron-Lacny, A. (2013). Genes in sport and doping. Biol Sport, 30(3), 155-161. doi:10. 5604/20831862.1059606

Puthucheary, Z., Skipworth, J. R., Rawal, J., Loosemore, M., Van Someren, K., & Montgomery, H. E. (2011a). Genetic influences in sport and physical performance. Sports Med, 41(10), 845-859. doi:10.2165/ 11593200-000000000-00000

Puthucheary, Z., Skipworth, J.R., Rawal, J., Loosemore, M., Van Someren, K., & Montgomery, H. E. (2011b). The ACE gene and human performance: 12 years on. Sports Med, 41(6), 433-448. doi:10.2165/ 11588720-000000000-00000

Robles, R. G., Ramírez, P. A. A., & Velásquez, S. P. P. (2012). Epigenética: definición, bases moleculares e implicaciones en la salud y en la evolución humana. Revista Ciencias de la Salud, 10(1), 59-71.

Rodenhiser, D.I., Andrews, J., Kennette, W., Sadikovic, B., Mendlowitz, A., Tuck, A. B., & Chambers, A. F. (2008). Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res, 10(4), R62.

doi:10.1186/bcr2121

Roth, S. M. (2012). Critical overview of applications of genetic testing in sport talent identification. Recent Pat DNA Gene Seq, 6(3), 247-255.

Ruiz, J. R., Fernandez del Valle, M., Verde, Z., Diez-Vega, I., Santiago, C., Yvert, T., . . . Lucia, A. (2011). ACTN3 R577X polymorphism does not

influence explosive leg muscle power in elite volleyball players. Scand J Med Sci Sports, 21(6), e34-41. doi:10.1111/j.1600-0838.2010.01134.x

Scott, R. A., Irving, R., Irwin, L., Morrison, E., Charlton, V., Austin, K., . . . Pitsiladis, Y. P. (2010). ACTN3 and ACE genotypes in elite Jamaican

and US sprinters. Med Sci Sports Exerc, 42(1), 107-112. doi:10.1249/ MSS.0b013e3181ae2bc0

Tan, Q., Christiansen, L., Thomassen, M., Kruse, T. A., & Christensen, K. (2013). Twins for epigenetic studies of human aging and development.

Ageing Res Rev, 12(1), 182-187. doi:10.1016/j.arr.2012.06.004

Thomis, M.A., & Aerssens, J. (2012). Genetic variation in human muscle strength—opportunities for therapeutic interventions? Curr Opin Pharmacol, 12(3), 355-362. doi:10.1016/j.coph.2012.03.003

Thomis, M.A., De Mars, G., Windelinckx, A., Peeters, M. W., Huygens, W., Aerssens, J., & Beunen, G. P. (2011). Genome-wide linkage scan for resistance to muscle fatigue. Scand J Med Sci Sports, 21(4), 580-588. doi:10.1111/j.1600-0838.2009.01082.x

Thompson, P.D., Moyna, N., Seip, R., Price, T., Clarkson, P., Angelopoulos, T., . . . Hoffman, E. P. (2004). Functional polymorphisms associated with human muscle size and strength. Med Sci Sports Exerc, 36(7), 1132-1139.

Trent, R. J., & Yu, B. (2009). The future of genetic research in exercise science and sports medicine. Med Sport Sci, 54, 187-195. doi:10.1159/ 000235705

Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van Leemputte, M., Hespel, P., & Thomis, M. A. (2010). Protective role of alphaactinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol (1985), 109(2), 564-573. doi:10.1152/japplphysiol.01007. 2009

Wang, P., Fedoruk, M.N., & Rupert, J.L. (2008). Keeping pace with ACE: ¿are ACE inhibitors and angiotensin II type 1 receptor antagonists

potential doping agents? Sports Med, 38(12), 1065-1079. doi:10.2165/ 00007256-200838120-00008

Wolfarth, B., Rankinen, T., Muhlbauer, S., Scherr, J., Boulay, M. R., Perusse, L., et al. (2007). Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism, 56(12), 1649-1651. doi:10.1016/j.metabol.2007.07.006

Zhang, D., Li, S., Tan, Q., & Pang, Z. (2012). Twinbased DNA methylation analysis takes the center stage of studies of human complex diseases. J Genet Genomics, 39(11), 581-586. doi:10.1016/j.jgg.2012.07.012

Citaciones