Innovación y Tecnología en Fisioterapia Futuras herramientas de intervención

Innovation and Technology in Physiotherapy Future intervention tools

Contenido principal del artículo

José Iván Alfonso Mantilla
Jaime Martínez Santa

Resumen

Introducción: en la última década la tecnología ha avanzado en muchos campos profesionales alrededor del mundo, en fisioterapia el uso de la tecnología ha tenido un aumento exponencial en la creación de dispositivos tecnológicos de intervención y evaluación fisioterapéutica en pacientes con diversas patologías. Objetivo: realizar una revisión de la literatura con relación a las nuevas tecnologías de intervención y evaluación en fisioterapia. Materiales y métodos: se realizó una búsqueda de estudios entre el año 2000 y 2016, literatura que contemplara los siguientes términos MESH: Technology, Sport, Physical Theraphy, Virtual rehabilitation, Medical Laboratory. Resultados: las nuevas tecnologías en fisioterapia son sistemas especializados en la rehabilitación de pacientes con patologías neurológicas, osteomusculares y cardiovasculares, entre los sistemas a nivel mundial más conocidos se encuentran: balance trainer, dynstable, aretech zerog, zerog overground, Xbox Kinect, exoesqueletos robóticos, vetimax, optogait, humac, cold system, chaleco de electroestimulación, virtual rehab, Pablo, Nirvana, sistema BTS y sistemas de medición antropométrica. Conclusiones: la tecnología es la base del futuro, en rehabilitación el desarrollo de nuevos dispositivos permitirá la creación de nuevas herramientas de intervención lo cual favorecerá el crecimiento de nuevos conceptos en la fisioterapia a nivel mundial.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

José Iván Alfonso Mantilla, Universidad del Rosario

Fisioterapeuta, Universidad del Rosario

Jaime Martínez Santa

Fisioterapeuta, Universidad Nacional de Colombia

Especialista en Epidemiología, Universidad del Rosario

Especialista en Estadística, Universidad Nacional de Colombia

Especialista en Antropología Forense, Universidad Nacional de Colombia

Especialista en Fisioterapia en el Adulto Crítico, Universidad del Rosario

Referencias (VER)

Ardern, C. L., Pizzari, T., Wollin, M. R., & Webster, K. E. (2015). Hamstrings Strength Imbalance in Professional Football (Soccer) Players in Australia. Journal of Strength and Conditioning Research, 29(4), 997-1002. doi: https://doi.org/10.1519/JSC.0000000000000747

Baur, H., Müller, S., Hirschmüller, A., & Mayer, F. (2006). Reactivity, stability, and strength performance capacity in motor sports. British Journal of Sports Medicine, 906-911. doi: http://dx.doi.org/10.1136/bjsm.2006.025783

Bieryla, K. A. (2016). Xbox Kinect training to improve clinical measures of balance in older adults: a pilot study. Aging Clinical and Experimental Research, 28(3), 451-457. doi: https://doi.org/10.1007/s40520-015-0452-y

Bieuzen, F., Pournot, H., Roulland, R., & Hausswirth, C. (2012). Recovery After HighIntensity Intermittent Exercise in Elite Soccer Players Using VEINOPLUS Sport Technology for Blood-Flow Stimulation. Journal of Athletic Training, 47(5), 498-506. doi: https://doi.org/10.4085/1062-6050-47.4.02

Billot, M., Martin, A., Paizis, C., Cometti, C., & Babault, N. (2010). Effects of an Electrostimulation Training Program on Strength, Jumping, and Kicking Capacities in Soccer Players. Journal of Strength and Conditioning Research, 24(5), 1407-1413. doi: https://doi.org/10.1519/ JSC.0b013e3181d43790

Bitterman, N., & Bonen, A. (2016). Design and Human Factors of Therapeutic Hyperbaric Chambers. Aerospace Medicine and Human Performance, 87(4), 397-405. doi: https://doi.org/10.3357/AMHP.4500.2016

Borghese, N. A., Pirovano, M., Lanzi, P. L., Wüest, S., & de Bruin, E. D. (2013). Computational Intelligence and Game Design for Effective At-Home Stroke Rehabilitation. Games for Health Journal, 2(2), 81-88. doi: https:// dx.doi.org/10.1089%2Fg4h.2012.0073

Burkett, B. (2010). Technology in Paralympic sport: performance enhancement or essential for performance? British Journal of Sports Medicine, 44(3), 215-20. doi: http://dx.doi.org/10.1136/bjsm.2009.067249

Carr, J. H., & Shepherd, R. B. (1998). Neurological Rehabilitation: Optimizing motor performance (2 illustrated ed.). (J. H. Carr, Ed.) Edinburgh [gb]: Churchill Livingstone [2010].

Choon-Huat Koh, G., Cheng Yen, S., Tay, A., Cheong, A., Sien Ng, Y., De Silva, D. A., . . . En Chua, C. (2015). Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) trial: protocol of a randomized clinical trial on telerehabilitation

for stroke patients. BMC Neurology, 15(161), nd. doi: https://doi.org/10.1186/s12883-015-0420-3

da Silva Cameirão, M., Bermúdez i Badia, S., Duarte, E., & Verschure, P. F. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system.

Restorative Neurology and Neuroscience, 29(5), 287-98. doi: https://doi.org/10.3233/RNN-2011-0599

de Araujo Ribeiro Alvares, J. B., Rodrigues, R., de Azevedo Franke, R., Cordeiro da Silva, B. G., Silveira Pinto, R., Vaz, M. A., & Manfredini Baroni, B. (2015). Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Physical Therapy in Sport, 16(1), 59-65. doi: https://doi.org/10.1016/j.ptsp.2014.04.004

Dziuba, A. K., Żurek, G., Garrard, I., & Wierzbicka-Damska, I. (2015). Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds. Acta of Bioengineering and Biomechanics, 17(1), 95-101. Obtenido de http://www.actabio.pwr.wroc.pl/Vol17No1/11.pdf

Fischer, M. V., Stone, J., Hawkes, T. D., Eveland, E., & Strang, A. J. (2015). Integrative Physical and Cognitive Training Development to Better Meet Airmen Mission Requirements. Procedia Manufacturing, 3, 1580-1586. doi:

https://doi.org/10.1016/j.promfg.2015.07.445

Frey, M., Colombo, G., Vaglio, M., Bucher, R., Jörg, M., & Riener, R. (2006). A Novel Mechatronic Body Weight Support System. EEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3), 311-21. doi: https://doi. org/10.1109/TNSRE.2006.881556

Gronbech Jorgensen, M., Paramanathan, S., Ryg, J., Masud, T., & Andersen, S.(2015). Novel use of the Nintendo Wii board as a measure of reaction time: a study of reproducibility in older and younger adults. BMC Geriatrics, 15-80. doi: https://dx.doi.org/10.1186%2Fs12877-015-0080-6

Halder, A., Gao, C., & Miller, M. (2014). Effects of Cooling on Ankle Muscle Strength, Electromyography, and Gait Ground Reaction Forces. (A. W. Midgley, Ed.) Journal of Sports Medicine, 2014(Article ID 520124), 8. doi: http://dx.doi.

org/10.1155/2014/520124

Hidler, J., Brennan, D., Black, i., Nichols, D., Brady, K., & Nef, T. (2011). ZeroG: overground gait and balance training system. Journal of Rehabilitation Research & Development, 48(4), 287-298. doi:https://doix.org/10.1682/ JRRD.2010.05.0098

Horak, F., King, L., & Mancini, M. (2015). Role of Body-Worn Movement Monitor Technology for Balance and Gait Rehabilitation. Physical Therapy, 95(3),461-470. doi: https://doi.org/10.2522/ptj.20140253

Kemmler, W., Stengel, S. V., Schwarz, J., & Mayhew, J. L. (2012). Effect of wholebody electromyostimulation on energy expenditure during exercise. Journal of Strength and Conditioning Research, 26(1), 240-245. doi:

https://doi.org/10.1519/JSC.0b013e31821a3a11

Kyle UG, E. C.-B. (2015). Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. European Journal of Clinical Nutrition, 69, 1298-1305. doi: https://doi.org/10.1038/ejcn.2015.86

Liebermann, D. G., Katz, L., Hughes, M. D., Bartlett, R. M., McClements, J., & Franks, I. M. (2002). Advances in the application of information technology to sport performance. Journal of Sports Sciences, 20(10), 755-769. doi:

https://doi.org/10.1080/026404102320675611

Lienhard, K., Schneider, D., & Maffiuletti, N. A. (2013). Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Medical Engineering and Physics, 35(4), 500-504. doi: https://

doi.org/10.1016/j.medengphy.2012.06.015

Lohse, K. R., Hilderman, C. G., Cheung, K. L., Tatla, S., & Van der Loos, H. F. (2014). Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-Analysis Exploring Virtual Environments and Commercial Games in Therapy. (T. J. Quin, Ed.) PLoS ONE, 9(3), e93318. doi: https://doi.org/10.1371/journal.pone.0093318

Lv, G., & Gregg, R. D. (2015). Orthotic Body-Weight Support Through Underactuated Potential Energy Shaping with Contact Constraints. 54th IEEE Conference on Decision and Control (CDC). Osaka [jp]: IEEE. doi:https://doi.org/10.1109/ CDC.2015.7402420

Maffiuletti, N. A., Dugnani, S., Folz, M., Di Pierno, E., & Mauro, F. (2002). Effect of combined electrostimulation and plyometric training on vertical jump height. Medicine & Science in Sports & Exercise, 34(10), 1638-1644. doi:

https://doi.org/10.1249/01.MSS.0000031481.28915.56

Maffiuletti, N. A., Zory, R., Miotti, D., Pellegrino, M. A., Jubeau, M., & Bottinelli, R.(2006). Neuromuscular adaptations to electrostimulation resistance training. American Journal of Physical Medicine & Rehabilitation, 85(2), 167-175. doi: https://doi.org/10.1097/01.phm.0000197570.03343.18

McClenton, L. S., Brown, L. E., Coburn, J. W., & Kersey, R. D. (2008). The effect of short-term VertiMax vs. depth jump training on vertical jump performance. Journal of Strength & Conditioning Research, 22(2), 321-325. doi: https://doi.org/10.1519/JSC.0b013e3181639f8f

Mo Lee, M., Ho Song, C., Jin Lee, K., Woo Jung, S., Chul Shin, D., & Ho Shin, S. (2014). Concurrent Validity and Test-retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-temporal Parameters of the Gait of Young Adults. Journal of Physical Therapy Science, 26(1), 81-85. doi: https://doi.org/10.1589/jpts.26.81

Moon, J. R. (2013). Body composition in athletes and sports nutrition: an examination of the bioimpedance analysis technique. European Journal of Clinical Nutrition(67), S54-S59. doi: https://doi.org/10.1038/ejcn.2012.165

Needham, D. M., Truong, A. D., & Fan, E. (2009). Technology to enhance physical rehabilitation of critically ill patients. Critical Care Medicine, 37(10), 436-441. doi: https://doi.org/10.1097/CCM.0b013e3181b6fa29

Negrini, S., Marchini, G., & Tessadri, F. (2011). Brace technology thematic series - The Sforzesco and Sibilla braces, and the SPoRT (Symmetric, Patient oriented, Rigid, Three-dimensional, active) concept. Scoliosis and Spinal

Disorders, 6(8). doi: https://doi.org/10.1186/1748-7161-6-8

Patrizi, A., Pennestrì, E., & Valentini, P. P. (2016). Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics. Ergonomics, 59(1), 155-62. doi: https://doi.org/10.1080/00140139.2015.1057238

Rand, D., Zeilig, G., & Kizony, R. (2015). Rehab-let: touchscreen tablet for selftraining impaired dexterity post stroke: study protocol for a pilot randomized controlled tria. Trials, 16, 277. doi: https://doi.org/10.1186/

s13063-015-0796-9

Rhea, M. R., Peterson, M. D., Lunt, K. T., & Ayllón, F. N. (2008). The effectiveness of resisted jump training on the VertiMax in high school athletes. Journal of Strength and Conditioning Research, 22(3), 731-734. doi: https://doi.

org/10.1519/JSC.0b013e3181660c59

Rhea, M. R., Peterson, M. D., Oliverson, J. R., Ayllón, F. N., & Potenziano, B. J. (2008). An examination of training on the VertiMax resisted jumping device for improvements in lower body power in highly trained college athletes.

Journal of Strength & Conditioning Research, 22(3), 735-740. doi: https://doi.org/10.1519/JSC.0b013e3181660d61

Sabut, S. K., Bhattacharya, S. D., & Manjunatha, M. (2013). Functional electrical stimulation on improving foot drop gait in poststroke rehabilitation: a review of its technology and clinical efficacy. Critical Reviws in Biomedical Engineering, 41(2), 149-160. doi: https://doi.org/10.1615/

CritRevBiomedEng.2013007621

Sale, P., Mazzoleni, S., Lombardi, V., Galafate, D., Massimiani, M. P., Posteraro, F., . . . Franceschini, M. (2014). Recovery of hand function with robotassisted therapy in acute stroke patients: a randomized-controlled trial.

International Journal of Rehabilitation Research, 37(3), 236-42. doi:https://doi.org/10.1097/MRR.0000000000000059

Saposnik, G., Mamdani, M., M., B., Thorpe, K. E., Hall, J., Cohen, L. G., & Teasell, R. (2010). Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. pubMed, 5(1), 47-51. doi: https://doi.org/10.1111/j.1747-4949.2009.00404.x

Sarramian, V. G., Turner, A. N., & Greenhalgh, A. K. (2015). Effect of postactivation potentiation on fifty-meter freestyle in national swimmers. Journal of Strength and Conditioning Research. , 29(4), 1003-1009. doi: https://doi.

org/10.1519/JSC.0000000000000708

Seamon, B., DeFranco, M., & Thigpen, M. (2017). Use of the Xbox Kinect virtual gaming system to improve gait, postural control and cognitive awareness in an individual with Progressive Supranuclear Palsy. Disability and Rehabilitation, 39, 721-726. doi: https://doi.org/10.3109/096

2016.1160444

Shibata, Y., Imai, S., Nobutomo, T., Miyoshi, T., & Yamamoto, S.-I. (2010). Development of body weight support gait training system using antagonistic bi-articular muscle model. Annual International Conference of the IEEE Engineering in Medicine and Biology (págs. 4468-4471). Buenos Aires [ar]: IEEE. doi: https://doi.org/10.1109/IEMBS.2010.5625972

Shin, J.-H., Ryu, H., & Jang, S. H. (2014). A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of NeuroEngineering and Rehabilitation, 11(32). doi: https://doi.org/10.1186/1743-0003-11-32

Stein, J., Bishop, L., Gillen, G., & Helbok, R. (2011). Robot-assisted exercise for hand weakness after stroke: a pilot study. American Journal of Physical Medicine & Rehabilitation, 90(11), 887-894. doi: https://doi.org/10.1097/PHM.0b013e3182328623

Taylor, M. J., & Griffin, M. (2015). The use of gaming technology for rehabilitation in people with multiple sclerosis. Multiple Sclerosis Journal, 21(4), 355-371.

doi: https://doi.org/10.1177/1352458514563593

Tiseo, C., Lim, Z. Y., Shee, C. Y., & Ang, W. T. (2014). Mobile robotic assistive balance trainer - an intelligent compliant and adaptive robotic balance assistant for daily living. 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (págs. 5300-3). Chicago [us]:IEEE. doi: https://doi.org/10.1109/EMBC.2014.6944822

Tyler, C. J., Sunderland, C., & Cheung, S. S. (2015). The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. British Journal of Sport Medicine, 49(1), 7-13. doi: https://

doi.org/10.1136/bjsports-2012-091739

Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE, 9(2), e87987. doi: https://dx.doi.org/10.1371%2Fjournal.pone.0087987

Verhagen, E., & Bolling, C. (2015). Protecting the health of the @hlete: how online technology may aid our common goal to prevent injury and illness in sport. British Journal of Sports Medicine, 49, 1174-1178. doi: http://dx.doi.

org/10.1136/bjsports-2014-094322

Vignais, N., Kulpa, R., Brault, S., Presse, D., & Bideau, B. (2015). Which technology to investigate visual perception in sport: Video vs. virtual reality. Human Movement Science, 39, 12-26. doi: https://doi.org/10.1016/j.humov.2014.10.006

von Stengel, S., Bebenek, M., Engelke, K., & Kemmler, W. (2015). Whole-Body Electromyostimulation to Fight Osteopenia in Elderly Females: The Randomized Controlled Training and Electrostimulation Trial (TEST-III). (H. Sievänen, Ed.) Journal of Osteoporosis, 643-520. doi: http://dx.doi.

org/10.1155/2015/643520

Yavuz Karahan, A., Tok, F., Taşkın, H., Kuçuksaraç, S., Başaran, A., & Yıldırım, P. (2015). Effects of Exergames on Balance, Functional Mobility, and Quality of Life of Geriatrics Versus Home Exercise Programme: Randomized

Controlled Study. Central European Journal of Public Health, 23 (supplement), S14-S18. doi: http://dx.doi.org/10.21101/cejph.a4081

Zahid, Z., & Atique, S. (2016). Telerehabilitation Services in Pakistan: A Rehabilitation Professional’s Perspective. Studies in health technology and informatics, 225, 901-2.

Zvijac, J. E., Toriscelli, T. A., Merrick, S., & Kiebzak, G. M. (2013). Isokinetic concentric quadriceps and hamstring strength variables from the NFL Scouting Combine are not predictive of hamstring injury in first-year professional

football players. The American Journal of Sports Medicine, 41(7), 1511-1518. doi: https://doi.org/10.1177/0363546513487983

Zwierko, T., Florkiewicz, B., Fogtman, S., & Kszak-Krzyżanowska, A. (2014). The Ability to maintain attention during visuomotor task performance in handball players and non-athletes. Central European Journal of Sport Sciences and Medicine, 7(3), 99-106. Obtenido de https://wnus.edu.pl/

cejssm/hr/issue/23/article/164/

Citado por